Annexe

Intégrales de MOHR : $\frac{1}{\ell} \int_{0}^{\ell} M(x)m(x)dx$

à multiplier par $\frac{\ell}{EI}$ pour $M_f, \frac{\ell}{EA}$ pour N, ou $\frac{\ell}{GA_r}$ pour V.

 ℓ = longueur du tronçon d'intégration.

h						
m(x)	m	m	m	$m_{\rm g} \underbrace{m_{\rm t}}_{\ell 2 - \ell / 2} m_{\rm d}$		$ \begin{array}{c} $
Μ	Mm	$\frac{1}{2}$ Mm	$\frac{1}{2}$ Mm	$\frac{1}{2}M(m_{\text{g}}+m_{\text{d}})$	$\frac{1}{2}$ Mm	$\frac{1}{2}$ Mm
ou M M	$\frac{1}{2}$ Mm	$\frac{1}{3}$ Mm	$\frac{1}{6}$ Mm	$\frac{1}{6}M(m_{\text{g}}+2m_{\text{d}})$	$\frac{1}{4}$ Mm	$\frac{1}{6}\text{Mm}(1+\alpha)$
ou M	$\frac{1}{2}$ Mm	$\frac{1}{6}$ Mm	$\frac{1}{3}$ Mm	$\frac{1}{6}M(2m_{\text{g}}+m_{\text{d}})$	$\frac{1}{4}$ Mm	$\frac{1}{6} Mm (1+\beta)$
M_g M_d M_d M_d M_d M_d M_d	1 (V + V 1)	$\frac{m}{6}(M_g + 2M_d)$	$\frac{m}{6}(2M_{\text{g}}\text{+}M_{\text{d}})$	$\frac{1}{6}(2M_gm_g+\\2M_dm_d+M_gm_d$	$\frac{m}{4}(M_g + M_d)$	$\begin{aligned} &\frac{1}{6}m\left[M_{\text{d}}\left(1+\beta\right)\right.\\ &\left.+M_{\text{g}}\left(1+\alpha\right)\right] \end{aligned}$
Mg Md				$+ M_d m_g$		
ou <u>\(\lambda_{\lambda_2} \lambda_{\lambda_2}\)</u>	$\frac{1}{2}$ Mm	$\frac{1}{4}$ Mm	$\frac{1}{4}$ Mm	$\frac{1}{4}M(m_{\text{g}}+m_{\text{d}})$	$\frac{1}{3}$ Mm	$\frac{1}{12}\text{Mm} (3 - 4\alpha^2)/\beta$
ou $\alpha \ell$ $\beta \ell$ $\alpha + \beta = 1$	$\frac{1}{2}$ Mm	$\frac{1}{6}$ Mm(1+ α)	$\frac{1}{6}\text{Mm}(1+\beta)$	$\begin{split} &\frac{1}{6} M[m_{\text{g}} \left(1+\beta\right) \\ &+ m_{\text{d}} \left(1+\alpha\right)] \end{split}$	$\frac{1}{12} \text{Mm } (3 - 4\alpha^2)/\beta$	$\frac{1}{3}$ Mm
ou M	$\frac{2}{3}$ Mm	$\frac{1}{3}$ Mm	$\frac{1}{3}$ Mm	$\frac{1}{3}M(m_{\text{g}}+m_{\text{d}})$	$\frac{5}{12}$ Mm	$\frac{1}{3}\mathrm{Mm}(1+\alpha\beta)$
M	$\frac{2}{3}$ Mm	$\frac{1}{4}$ Mm	$\frac{5}{12}$ Mm	$\frac{1}{12}\mathrm{M}(5\mathrm{m_g}+3\mathrm{m_d})$	$\frac{17}{48}$ Mm	$\frac{1}{12} \text{Mm} (5 - \alpha - \alpha^2)$
\sim M	$\frac{2}{3}$ Mm	$\frac{5}{12}$ Mm	$\frac{1}{4}$ Mm	$\frac{1}{12}$ M(3m _g +5m _d)	$\frac{17}{48}$ Mm	$\frac{1}{12} \text{Mm} (5 - \beta - \beta^2)$
M	$\frac{1}{3}$ Mm	$\frac{1}{12}$ Mm	$\frac{1}{4}$ Mm	$\frac{1}{12}\mathrm{M}(3m_{\text{g}}+\!m_{\text{d}})$	$\frac{7}{48}$ Mm	$\frac{1}{12} Mm \left(1 + \beta + \beta^2\right)$
M	$\frac{1}{3}$ Mm	$\frac{1}{4}$ Mm	$\frac{5}{12}$ Mm	$\frac{1}{12}M(m_{\text{g}}+3m_{\text{d}})$	$\frac{7}{48}$ Mm	$\frac{1}{12}\mathrm{Mm}(1+\alpha+\alpha^2)$
$M_t M_g$	$\frac{1}{6}$ m(3M _g +	$\frac{1}{6}$ m(M _g +	$\frac{1}{6}$ m(2M _g +	$\frac{m_{\text{g}}}{6}(2M_{\text{g}}+M_{\text{d}}$	$\frac{1}{4}$ m(M _g +	$\frac{1}{6}m\left[M_{\text{g}}(1+\beta)\right.$
ou k l/2 × l/2 ×	$3M_d + 4M_0)$	$2M_d + 2M_0)$	$\mathrm{M_d} + 2\mathrm{M_0})$	$+2M_{0})+\frac{m_{_{d}}}{6}(M_{g}$	$M_{\rm d} + \frac{5}{3} M_0)$	$\frac{\frac{1}{12} \text{Mm} (1 + \alpha + \alpha^2)}{\frac{1}{6} \text{m} \left[M_g (1 + \beta) + M_d (1 + \alpha) + 2 M_0 (1 + \alpha \beta) \right]}$
M_0 M_t M	d ou	ou	ou	$+2\mathrm{M_d}+2\mathrm{M_0})$ ou	ou	
$M = M_0 + \frac{M_g + M_d}{M_g}$	$\frac{-}{6}$ (Wig + Wid	$\frac{m}{6}(M_d+2M_t)$	$\frac{m}{6}(Mg+2M_{t})$	$\frac{1}{6} \left(M_g m_g + M_d m_d + \frac{1}{6} \right)$	$\frac{m}{24}(M_g + M_d$	
2	+ 4M _t)			4M _t m _t)	+10M _t)	

Nota: m_s , m_d , m_t , M_t , M_g , M_d , M_t et M_0 sont à prendre en valeur algébrique (avec leur signe). M_0 est le moment fléchissant maxi du tronçon iso sur 2 appuis simple ($M_0 = \pm p \ell^2/8$)