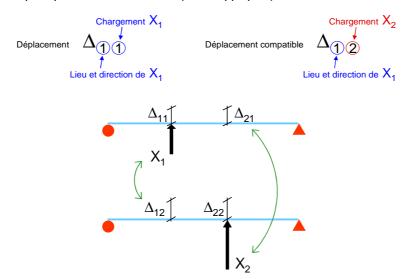
## TP d'énergétique N3

Application de la méthodologie du TP N2 pour la détermination de 2 inconnues hyperstatiques.

Généralisation du principe des travaux virtuels à 2 inconnues (forme appliquée).

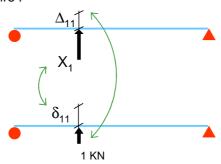
Rappel du TP N2 : Le principe des travaux virtuels (forme appliquée).



Le **travail** de  $X_1$  dans le déplacement compatible  $\Delta_{12}$  sous le chargement  $X_2$   $\frac{1}{2}$   $X_1 \cdot \Delta_{12}$  est égal au

travail de  $X_2$  dans le déplacement compatible  $\Delta_{21}$  sous le chargement  $X_1$   $\frac{1}{2}$   $X_2 \cdot \Delta_2$ 

De façon similaire on peut déduire :



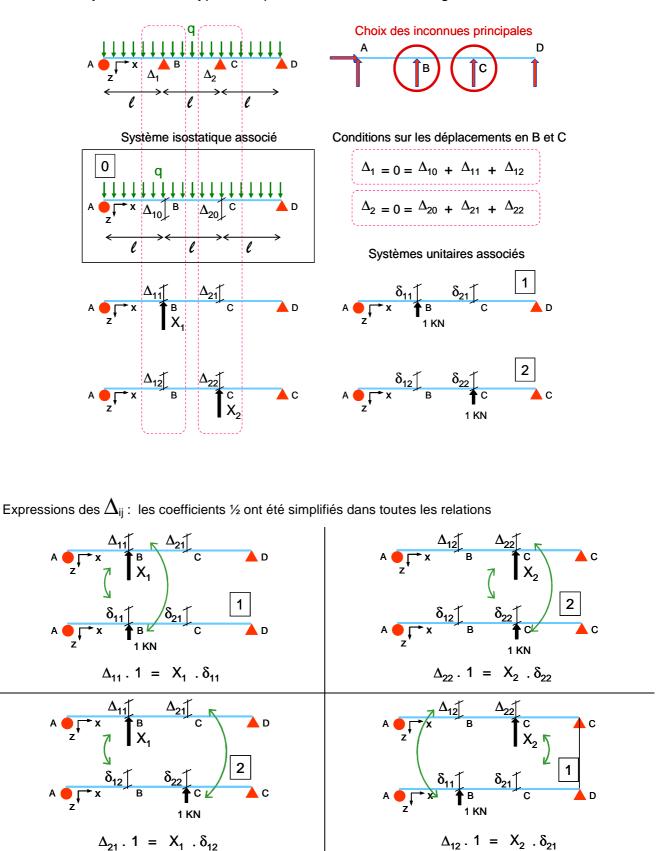
Le **travail** de  $X_1$  dans le déplacement compatible  $\delta_{11}$  sous chargement unitaire  $\frac{1}{2} X_1 \cdot \delta_{11}$ 

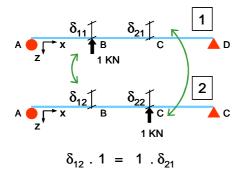
Le **travail** de 1 dans le déplacement compatible  $\Delta_{11}$  sous le chargement  $X_1$   $\frac{1}{2}$  1 .  $\Delta_{11}$ 

Remarque : la littérature fait souvent un raccourci en indiquant que  $\Delta_{11}$  et  $\delta_{11}$  sont proportionnels et en écrivant :  $\Delta_{11} = X_1$  .  $\delta_{11}$  ce qui est incorrect car non homogène. La formulation correcte est :

1 .  $\Delta_{11} = X_1$  .  $\delta_{11}$  avec 1 charge unitaire

## Etude d'un système initial hyperstatique extérieurement de degré 2





 $\delta_{12} = \delta_{21}$  appliquons aux relations:

$$\Delta_{21}$$
 . 1 =  $X_1$  .  $\delta_{12}$  =  $X_1$  .  $\delta_{21}$ 

$$\Delta_{12} \cdot 1 = X_2 \cdot \delta_{21} = X_2 \cdot \delta_{12}$$

Les conditions sur les déplacements en B et C deviennent :

$$\Delta_{1} = 0 = \Delta_{10} + \Delta_{11} + \Delta_{12} = \Delta_{10} + X_{1} \cdot \delta_{11} + X_{2} \cdot \delta_{12}$$

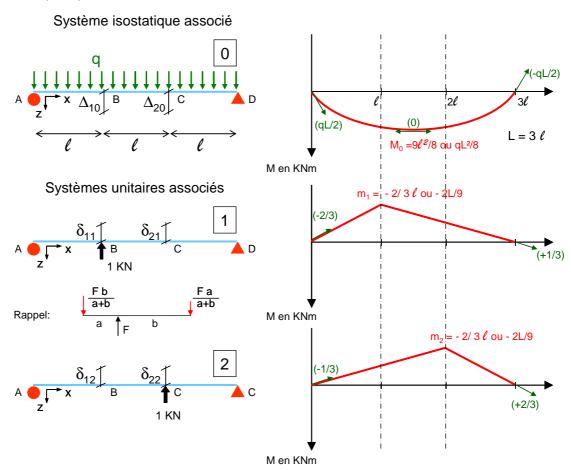
$$\Delta_{2} = 0 = \Delta_{20} + \Delta_{21} + \Delta_{22} = \Delta_{20} + X_{1} \cdot \delta_{21} + X_{2} \cdot \delta_{22}$$

On en déduit la formulation générale:

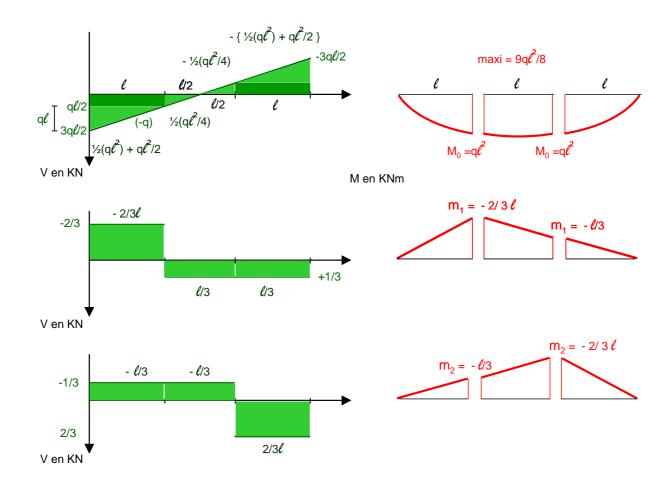
Système isostatique associé 
$$\neg$$
 Combinaisons sur les Système unitaires  $0 = \Delta_{i0} + \sum_i X_j \cdot \delta_{ij}$ 

La résolution du problème revient alors à déterminer les  $\Delta$ ij et les  $\delta$ ij en utilisant le principe d'équivalence (travail extérieur/énergie de déformation) et donc à calculer ces déplacements à l'aide du tableau des intégrales de Mohr après avoir établi les diagrammes de moments de chaque système (isostatiques et unitaires)

**Diagrammes de moments** : nous formulons l'hypothèse que l'énergie de déformation dans les différents systèmes est principalement due au moment fléchissant.

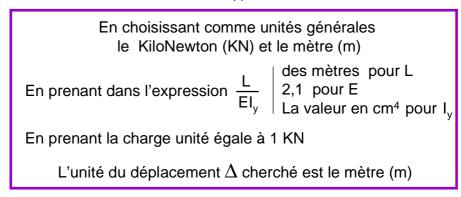


**Remarque** : les résultats connus pour ces diagrammes ne suffisent pas car il faut calculer les différentes valeurs de  $M_0$ ,  $m_1$  et  $m_2$  aux extrémités de chaque tronçon étudié. Le calcul de ces valeurs peut se faire par la détermination des aires de la fonction d'effort tranchant (variation du moment). Nous proposons alors :



Calcul de l'expression L/Ely: sa valeur est constante parce que la poutre a une inertie constante et les tronçons ont la même longueur. Dans un calcul général il faudra penser à spécifier chaque valeur en fonction du tronçon ou de la barre étudiée.





## Tableau de calculs et de résultats

| Barre |                                                                | Tableau de<br>Mohr ℓ / E I <sub>y</sub> |                   |
|-------|----------------------------------------------------------------|-----------------------------------------|-------------------|
| A-B   | $M_0 = q \ell$ $m_1 = -2/3 \ell$                               |                                         |                   |
| В-С   | $M_0 = q\ell^2$ $M_0 = q\ell^2$ $M_1 = -2/3\ell$ $M_1 = -\ell$ | 3                                       | $\Delta_{10} =$   |
| C-D   | $M_0 = q\ell^2$ $m_1 = -\ell/3$                                |                                         |                   |
| A-B   | $M_0 = q\ell^2$ $m_2 = -\ell/3$                                |                                         |                   |
| В-С   | $M_0 = q\ell^2 \qquad M_0 = q\ell^2 \qquad M_2 = -\ell/3$      | 2/3                                     | $\Delta_{20} =$   |
| C-D   | $m_2 = -2/3 \ell$ $M_0 = q\ell^2$                              |                                         |                   |
|       | $m_1 = -2/3\ell$ $m_1 = -2/3\ell$                              |                                         |                   |
| A-B   |                                                                |                                         |                   |
| В-С   | $m_1 = -2/3 \ell$ $m_1 = -2/3 \ell$ $m_1 = -2/3 \ell$          | 3                                       | $\delta_{11} =$   |
| C-D   | $m_1 = -\ell/3$ $m_1 = -\ell/3$                                |                                         |                   |
| A-B   | $m_1 = -2/3\ell$ $m_2 = -\ell/3$                               |                                         |                   |
| В-С   | $m_1 = -2/3 \ell$ $m_2 = -\ell/3$                              | - 2/:                                   | $\delta_{12}$ =   |
| C-D   | $m_1 = -\ell/3$ $m_2 = -2/3 \ell$                              |                                         |                   |
| А-В   | $m_2 = -\ell/3$ $m_2 = -\ell/3$                                |                                         |                   |
| В-С   | $m_2 = -\ell/3$ $m_2 = -\ell/3$ $m_2 = -\ell/3$                | 2/3                                     | δ <sub>22</sub> = |
| C-D   | $m_2 = -2/3\ell$ $m_2 = -2/3\ell$                              |                                         |                   |

## Résolution du système :

Proposition par substitution.

$$\Delta_{10} + X_{1} \cdot \delta_{11} + X_{2} \cdot \delta_{12} = 0 \longrightarrow X_{1} = -\frac{1}{\delta_{11}} (\Delta_{10} + X_{2} \cdot \delta_{12})$$

$$\Delta_{20} + X_{1} \cdot \delta_{21} + X_{2} \cdot \delta_{22} = 0 \qquad X_{1} = -\frac{\Delta_{10}}{\delta_{11}} - X_{2} \frac{\delta_{12}}{\delta_{11}}$$

$$\Delta_{20} - \frac{\Delta_{10}}{\delta_{11}} \delta_{21} - X_{2} \frac{\delta_{12}}{\delta_{11}} \delta_{21} + X_{2} \cdot \delta_{22} = 0 \longrightarrow X_{2} = \frac{-(\Delta_{20} - \frac{\Delta_{10}}{\delta_{11}} \Delta_{21})}{-\frac{\delta_{12}}{\delta_{11}} \delta_{21} + \delta_{22}}$$

Application numérique.

$$\ell$$
 = 2 m; q = 2KN/m; profil IPE 140

Calculez les valeurs de X1 et X2 par la méthode des forces en complétant le tableau précédent. Vérifiez vos valeurs dans Rdm Le Mans.