BTS CONSTRUCTIONS METALLIQUES

E4: ANALYSE ET CALCULS DE STRUCTURES

U42: NOTE DE CALCUL

Durée : 4 heures Coefficient : 3

Le dossier technique d'étude est commun aux épreuves E4 et E5

DOCUMENTS AUTORISES:

Catalogue de profilés

Règlement ou extrait des règlements en vigueur

Contenu du dossier :

Travail demandé	Pages 1 à 2
Document réponse DR1	Page 3
Document réponse DR2	Page 4
Document Technique DT1	Page 5
Document Technique DT2	Page 6

Les documents réponses DR1 ET DR2 sont à agrafer dans la copie de composition

Les 5 parties peuvent être traitées indépendamment

Une attention particulière sera portée :

- au repérage des questions
- aux soins apportés à la rédaction et aux schémas

Il est conseillé au candidat de traiter chaque partie sur une nouvelle copie

Barème indicatif :

Question 1: 5 Question 2: 3 Question 3: 4

Question 4: 4 Question 5: 4

QUESTION 1: CHARGES CLIMATIQUES

1.1 Etude de la neige :

Déterminer et représenter sur des schémas cotés, les 3 cas de neige suivants :

- Cas S₁
- Cas S₂
- Cas S_A
- « L'accumulation ne sera pris en compte que le long des acrotères de long pan »

La hauteur de l'acrotère est 0,83 m

1.2 Etude de vent :


« Bâtiment fermé »

- 1.2.1 Déterminer $q_p(z)$
- 1.2.2 Etude du vent transversal W₁
- Définir le zonage du bâtiment et représenter les différentes zones, à l'échelle, sur le document **DR1** (avec la cotation)
- Calculer les C_{pe} sur le document **DR1** (détailler les calculs intermédiaires sur ce document).
- Calculer les C_{pnet} (avec $C_{pi} = -0.3$) sur le document DR1

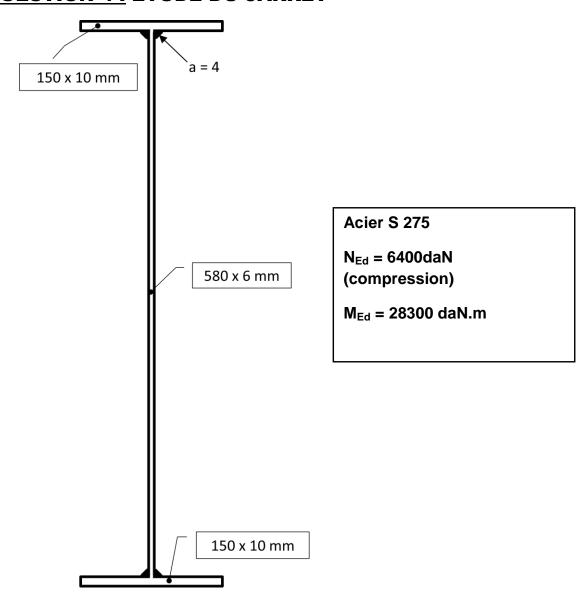
QUESTION 2: ETUDE INFORMATIQUE D'UN PORTIQUE COURANT

- Le portique courant et ses chargements sont décrits sur le document technique DT1
- Le listing des résultats sous la combinaison **ELU** est donné par le **DT2**
 - **2.1** Calculer les **actions extérieures** aux nœuds 1 et 4 (*pieds de poteaux*)
- <u>2.2</u> Sur le document **DR2** tracer les diagrammes de **V** et **M** sur le portique. Préciser les valeurs particulières (origine, extrémité et maximum)

QUESTION 3: ETUDE DE LA PANNE

Sous l'accumulation de neige le long de l'acrotère, représentée sur le schéma ci-dessus, la panne la plus chargée est la **panne N°2**

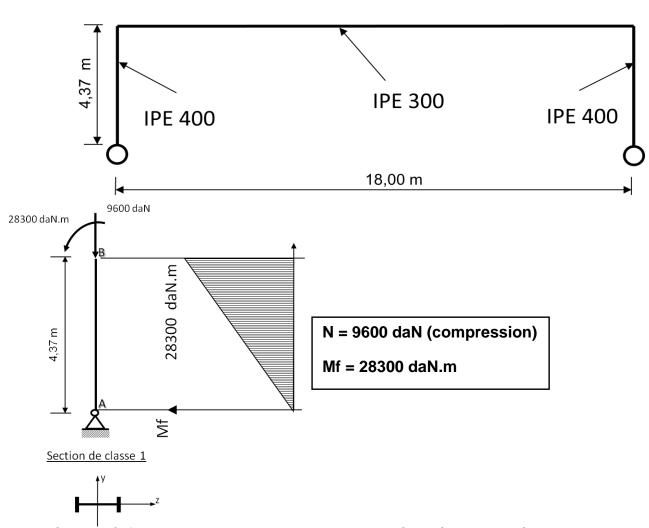
On se propose de vérifier la section **IPE 160** de cette panne isostatique sur 2 appuis et de longueur 6 m selon le modèle ci-dessous :


• Le chargement de la panne N°2 est le suivant :

G = Poids de la couverture (45 daN/m²) + Poids propre de la panne S = Neige accumulée sur la panne N°2

- 3.1 Calculer la charge linéaire p_G exercée sur la panne 2 due aux charges permanentes
- 3.2 S charge de neige : Calculer la charge linéaire p_S exercée sur la panne 2 par le chargement de neige accumulée. (*Thal*ès)
- <u>3.3</u> Vérifier la résistance de la section transversale de la panne sous la combinaison **ELU** (on ne tiendra pas compte des phénomènes d'instabilité)
- <u>3.4</u> Vérifier la condition de déformation de la panne sous la combinaison **ELS**. Pour respecter les clauses de l'article 7.2.1 de l'Eurocode.

Page 1 sur 6


QUESTION 4: ETUDE DU JARRET

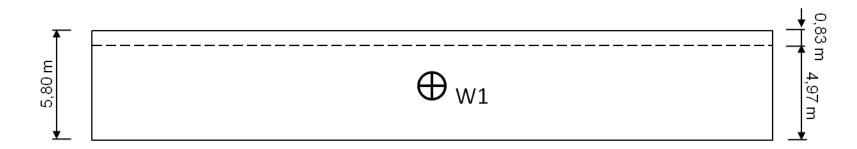
La section du jarret représentée ci-dessus, est sollicitée à l'ELU par un effort normal N_{Ed} = 6400 daN en compression et un moment M_{Ed} = 28300 daN.m

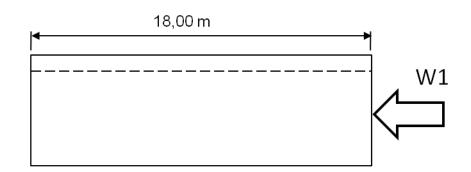
- <u>4.1</u> Montrer que cette section ne peut pas être classée en **classe 1** ni en **classe 2** et vérifier qu'elle est en **classe 3**
- <u>4.2</u> Vérifier la résistance de la section du jarret en classe 3 (vérification en élasticité). Vous calculerez les caractéristiques, de la section, necessaires à cette vérification.

QUESTION 5: ETUDE DU POTEAU D'UN PORTIQUE COURANT

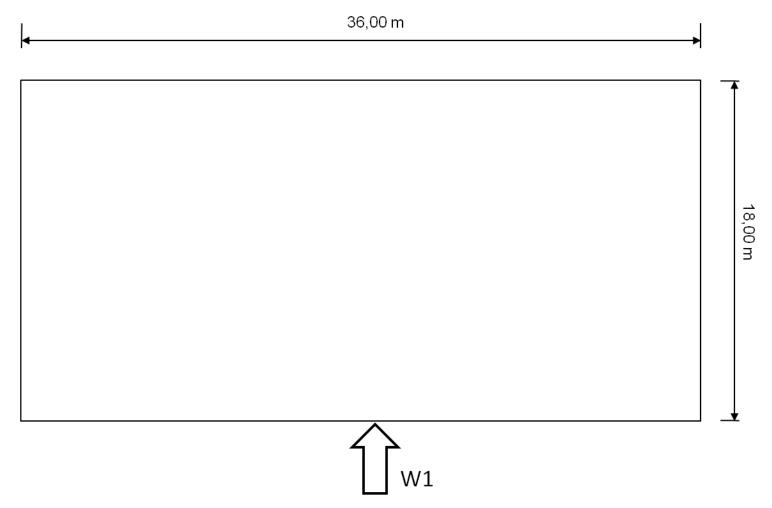
Le modèle de vérification du poteau de portique est représenté sur le schéma ci-dessus, on se propose de vérifier la stabilité de cette barre uniforme fléchie et comprimée (article 6.3.3)

La longueur critique ℓ_{Crz} = 4,37 m


- $\underline{\textbf{5.1}}$ Calculer la longueur critique $\emph{\textbf{\ell}}_{\textbf{Cry}}$ dans le plan du portique
- **5.2** Calculer χ_y et χ_z
- $\underline{5.3}$ Montrer que le M_{cry} = 65095 daN.m
- 5.4 Calculer χ_{LT}
- <u>5.5</u> On donne $k_{yy} = 0.8$ $k_{zy} = 0.6$; vérifier le poteau soumis à la flexion compression


Page 2 sur 6

DOCUMENT REPONSE DR1 : Hauteur de l'acrotère : 830 mm


VUE DE FACE

VUE DE GAUCHE

VUE EN PLAN

Vent tra	ansversa	l : W1	$C_{pi} = -$	0,3						
Zone	А	В	С	D	E	F	G	Н	I	Acrotère
Aire										
C _{pe}										
C _{pnet}										

ECH. : 1/200

DOCUMENT REPONSE DR2

DOCUMENT REPONSE DR2

Effort tranchant V : Echelle 1 mm pour 200 daN	<u>Moment Fléchissant M :</u> 1 mm pour 500 daN.m		

DOCUMENT TECHNIQUE DT1

Modélisation de l'ossature

Noeud(s) [m]

Noeud	X	У	Noeud	X	У
1	0.000	0.000	2	0.000	4.370
3	18.000	4.370	4	18.000	0.000
5	1.999	4.441	6	9.000	4.690
7	16.001	4.441	8	0.000	5.200
9	18.000	5.200			

Poutres(s) [m , rad]

Pout	re Ori	-> Ext	Orient Sect	Mat	Long	Туре
1	1	2	0.0000 16	11	4.370	Rigide - Rigide
2	3	4	0.0000 16	11	4.370	Rigide - Rigide
3	2	5	0.0000 14	11	2.000	Rigide - Rigide
4	5	6	0.0000 11	11	7.006	Rigide - Rigide
5	6	7	0.0000 11	11	7.006	Rigide - Rigide
6	7	3	0.0000 10	11	2.000	Rigide - Rigide
7	2	8	0.0000 12	11	0.830	Rigide - Rigide
8	3	9	0.0000 12	11	0.830	Rigide - Rigide

Section(s) droite(s)

Section droite 10:

Jarret

Section droite 11:

IPE - 300

Section droite 12:

IPE - 160

Section droite 14:

Jarret

Section droite 16:

IPE - 400

Matériau(x)

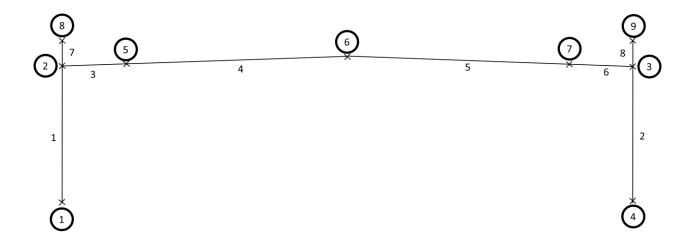
Matériau 11 : Acier S275 Module d'Young = 210000 MPa

Liaison(s) nodale(s)

Noeud 1 : dx = dy = 0Noeud 4 : dx = dy = 0

Cas de charge(s) 1 : Charges Permanentes

Le poids propre est pris en compte (g = 10.00 m/s2) 4 Charge(s) uniformément répartie(s) [daN/m]


Poutre 3: px = 0.0 py = -320.0 Poutre 4: px = 0.0 py = -320.0 Poutre 5: px = 0.0 py = -320.0 Poutre 6: px = 0.0 py = -320.0

Cas de charge(s) 2 : Vent

8 Charge(s) uniformément répartie(s) [daN/m]
Poutre 3: pX = 0.0 pY = -32.0 (Repère local)
Poutre 4: pX = 0.0 pY = -32.0 (Repère local)
Poutre 5: pX = 0.0 pY = -22.0 (Repère local)
Poutre 6: pX = 0.0 pY = -22.0 (Repère local)
Poutre 7: pX = 0.0 pY = -320.0 (Repère local)
Poutre 8: pX = 0.0 pY = -320.0 (Repère local)
Poutre 1: pX = 0.0 pY = -260.0 (Repère local)
Poutre 2: pX = 0.0 pY = 35.0 (Repère local)

Combinaison(s) de cas de charges : Combinaison ELU

1:1.35 Cas 1 + 1.50 Cas 2

Page 5 sur 6

DOCUMENT TECHNIQUE DT2

Résultats : Combinaison = 1.35 Cas 1 + 1.50 Cas 2

Efforts intérieurs [daN daN.m]

N = Effort normal TY = Effort tranchant MfZ = Moment fléchissant

ELE	ori ext	No Ne	TYo TYe TYmax	MfZo MfZe MfZmax
1	1 2	-4779.8 -4391.1	1527.3 3231.6 3231.6	-0.0 -10398.0 10398.0
2	3 4	-5219.1 -5607.8	-4033.2 -4262.6 4262.6	-18126.2 -0.0 18126.2
3	2 5	-3783.1 -3747.6	-4241.8 -3146.8 4241.8	-10232.7 -2852.5 10232.7
4	5 6	-3747.6 -3625.9	-3146.8 610.7 3146.8	-2852.5 6031.0 6376.6
5	6 7	-3660.1 -3781.8	351.7 4004.1 4004.1	6031.0 -9226.7 9226.7
6	7	-3781.8 -3817.3	4004.1 5069.1 5069.1	-9226.7 -18291.5 18291.5
7	2 8	-17.6 -0.0	-398.4 0.0 398.4	-165.3 0.0 165.3
8	3 9	-17.6 -0.0	-398.4 -0.0 398.4	-165.3 0.0 165.3